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1 Introduction

The U.S. Census Bureau, with support from other
Federal agencies, created the Small Area Income
and Poverty Estimates (SAIPE) program to pro-
vide more current estimates of selected income and
poverty statistics than the most recent decennial
census. Estimates are created for states, counties,
and school districts. The main objective of this
program is to provide updated estimates of income
and poverty statistics for the administration of fed-
eral programs and the allocation of federal funds to
local jurisdictions. For example, the No Child Left
Behind Act of 2001 directs the Department of Edu-
cation to distribute Title I basic and concentration
grants directly to school districts on the basis of
the most recent estimates of children in poverty
available from the Census Bureau (National Re-
search Council, 2000). In addition to these fed-
eral programs, there are hundreds of state and lo-
cal programs that depend on income and poverty
estimates for distributing funds and managing pro-
grams. In this paper we focus on estimation of the
number of poor school aged children (between the
ages of 5 and 17) for every school district.

The geographic boundaries of a school district
do not always fall within a single county. Before es-
timating the number of poor children in each school
district, we first split up the school districts that
cross over county boundaries into school district
pieces that fall within each county, i.e., pieces are
defined by the intersection of county and school dis-

1Disclaimer: This presentation is released to inform in-
terested parties of ongoing research and to encourage discus-
sion of work in progress. The views expressed on statistical
and methodological issues are those of the authors and not
necessarily those of the U.S. Census Bureau.

trict geographic boundaries. Estimates are made
for the school district pieces and aggregated to form
the estimate for the school district. The main rea-
son to split school districts into pieces is to make
estimates for the number of poor children that are
consistent with the official estimated number of
poor children for the entire county. Since the SAIPE
county model gives updated estimates of the num-
ber of poor children within each county, it is suffi-
cient to develop a model which reflects the changing
distribution of poor children between school dis-
trict pieces within a county. All estimates from
models at the school district piece level will be ra-
tio adjusted (raked) so that the totals are consistent
with the SAIPE county estimates.

In previous census years, the estimated number
of poor children has been obtained from the Census
long form results. In non-census years, the current
methodology used to estimate the number of poor
children is based on two quantities (U.S. Census
Bureau, 2004). The first part is the proportion of
the long form model-based estimate of the number
of poor children for the school district piece to the
total number of poor children in the county for the
census year. This creates a within county share and
the shares within every county sum up to 100 per-
cent. The second part is the SAIPE model-based
estimated number of poor children in the county for
the year of interest. Thus, given a geography for a
set of school districts within the county, we assume
that the distribution of poor children within the
county is the same as the distribution from the last
census, i.e. the shares remain constant. By con-
struction, the SAIPE school district estimates are
arithmetically consistent with the SAIPE county
estimates. The numbers of children in poverty are
then adjusted using controlled rounding to get a
result with the following properties:

1. The number of children in poverty for the



school district pieces in a county adds up to
the SAIPE estimate of the number of children
in poverty in their counties.

2. The number of children in poverty in the school
district pieces are integers.

The final step is to reassemble the school district
pieces into the school districts, simply by adding
their controlled-rounded numbers of people in poverty
together.

The estimation of the number of poor children
in school districts is a hard problem for two reasons.
First, the best source of data has been from the cen-
sus long form which has been only collected once
a decade. The Current Population Survey (CPS)
provides basic input data for the county model, but
it is much too sparse to use at the school district
level. The second problem is the lack of updated
information collected at the school district piece
level. None of the current ongoing national sur-
veys are designed to collect data for all school dis-
trict pieces. This may change once the American
Community Survey is fully implemented.

Administrative data sources such as IRS income
tax data may provide more current information
about child poverty than the last census. Variables
that are based on schools, such as free/reduced
price lunch participation and school enrollment, can
not be broken into their respective school district
pieces because it is not clear how many children in
each county are serviced by a school that is in a dis-
trict which crosses county lines. Also, school enroll-
ment data only takes into account children in pub-
lic school and not children in private or parochial
schools, or home-schooled. At this time, the IRS
income tax data appears to be the best source of
information for use in modeling the number of poor
children in school district pieces.

From the evaluation by Bell and Kramer (1999),
the current methodology for estimating the num-
ber of poor children in school districts has large
relative error. The goal of this paper is to develop
a refinement of the SAIPE school district poverty
estimates. Specifically, we want to use the IRS in-
come tax data instead of the most current census
data to estimate the within county share of poor
children. We proposed that the IRS income tax
data should give more relevant information about

the distribution of poor children within a county for
the corresponding non-census year than the census
data. In the next section, we will describe the IRS
income tax data and show how the data can be
made more relevant to the population of interest,
poor school-aged children. Several different mod-
els will be discussed in Section 3. A comparative
evaluation of the fit of the proposed models will be
done in Section 4. Finally, conclusions and limi-
tations of using the IRS income tax data will be
discussed in Section 5.

2 IRS Income Tax Data

In the current production models for both state and
county estimates for the number of poor, the IRS
income tax data is a useful predictor (U.S. Census
Bureau, 2004). In the state model, a “tax return
poverty rate” and nonfiler rate both help to pre-
dict the state poverty rate, where the “tax return
poverty rate” is a ratio with numerator being the
number of exemptions on income tax returns with
adjusted gross income below the poverty threshold
(which depends on the size of the household given
by the total number of exemptions on the tax re-
turn) and denominator being the total number of
exemptions. In the county model, the log number
of exemptions on income tax returns with adjusted
gross income below the poverty threshold (same cri-
teria as for the state model) is used in the model
for the number of poor. Recently, IRS income tax
data has been tabulated for school districts and
school district pieces to be used for estimates at
the school district level. Each return contributes a
number of total exemptions and a number of child
exemptions. Also, if a return has an adjusted gross
income below the official poverty threshold for a
family of the size implied by the number of exemp-
tions on the return, then all of the exemptions on
that return are considered to be poor exemptions.
Thus, there are four main quantities recorded from
each return: total exemptions, total poor exemp-
tions, child exemptions and poor child exemptions.

In order to assign the income tax returns to
the school district pieces, the return must first be
geocoded into a census block based on the home
address of the return. Not all returns are able to



have their home address successfully geocoded to a
census block. However, we can assign every tax re-
turn to a county, which we assume is done without
error. Therefore, we can compute the geocoding
rates for the various types of exemptions for each
county. After all of the returns are geocoded to
census blocks, or not geocoded to any block, the
exemptions in the blocks are tabulated for school
district pieces based on a given set of geographical
boundaries.

Some school districts have overlapping bound-
aries. Often this is due to an area being serviced
by separate elementary and secondary school dis-
tricts. The process for assigning tax exemptions
into school districts does not take this into account.
Therefore, the same tax exemptions may be as-
signed to multiple school districts. Between this
and the geocoding issues mentioned earlier, we can-
not simply use the tabulated number of tax exemp-
tions as given. In the next section, we will address
how to modify the tabulated numbers of tax ex-
emptions to deal with these two issues.

3 Models

Our goal is to model the number of poor children
in each school district. Our unit of analysis is
the school district piece. We have a collection of
school district pieces (j = 1, ..., Ji) in county i
(i = 1, ..., I). Data from Census 2000 long form es-
timates of related children aged 5-17 in families in
poverty will be used to fit and evaluate the model.
Since the data is from the long form, we also have
an estimate of the sampling error variance. The ex-
planatory variable will be the number of poor child
tax exemptions from the IRS income tax data. We
limit our analysis to counties which contain more
than one school district piece. Share models ob-
tain no information from counties that only contain
a single school district piece as there is no within
county variation to model. Also, we exclude school
district pieces that lack any census long form data.

In each county i, there is a tabulation of geocoded
exemptions for each school district piece j, xij,g,
and a tabulation of non geocoded exemptions, xi,ng.
Before the tax exemptions can be used in any model,
two issues need to be addressed. The first issue is

the age range of children that is serviced by the
school districts. Although no age is given for child
exemptions on the tax data, we will assume that
it covers the entire under 18 age group. For each
school district we have the grade range from the
NCES Common Core of Data. The most typical
grade ranges are unified (k-12), elementary (k-8)
and secondary (9-12). In some areas of 17 states
there are separate elementary and secondary school
districts, each exclusively responsible for providing
education to their respective grades in their shared
territory. In these areas, exemptions for school-age
children are allocated between districts in which
they reside on the basis of the grade range of the
district and the grade assigned to the child. The
census long form estimates for poor children reflect
the grade range of the school districts. Therefore,
we need to modify the number of poor child tax
exemptions to reflect the grade range of the school
district. Let Aij be the grade range adjustment fac-
tor for school district piece (i, j). We will assume
that the grade/age distribution is uniform within
county

Aij = grade range/18.

For example, a unified school district with grade
range K-12 will have Aij = 13/18. Thus, xaij,g =
xij,g ×Aij .

The second issue is how to deal with the non-
geocoded poor child exemptions, xi,ng, in each county.
We must find a process to distribute these exemp-
tions down into the school district pieces within the
county. The non-geocoded exemptions are first ad-
justed to reflect the target population of age 5 to
17 year old children (grade range K-12), xai,ng =
xi,ng × 13/18. We assume that the non-geocoded
exemptions are distributed among the school dis-
trict pieces by a multinomial process with the prob-
ability of an exemption belonging to a particular
piece being proportional to the number of relevant
school aged children in that school district piece
compared to the county:

pij =
School Dist Piece child popij

County child popi
.

By using a multinomial process with this proba-
bility structure, we are implicitly assuming that
the probability of each poor child exemption to



be a non-geocoded exemption is constant within
a county. We will assign the expected number of
non-geocoded exemptions under the multinomial
process to each piece. This gives a variable that
measures the grade range appropriate number of
exemptions with a correction for the non-geocoded
exemptions.

xij = xaij,g + (pij × xai,ng)

Since we put a probability distribution on the non-
geocoded exemptions, we can also compute the vari-
ance added to our exemption variable due to non-
geocoded allocation:

V ar(xi,j) = σ2
xij = xai,ngpij(1− pij). (1)

We will use this variance in number of poor child
exemptions to reflect that we do not observe the
true number of poor exemptions.

3.1 Log Count Models

Traditionally, we model the log transformation of
count data to stabilize the variance. This is equiv-
alent to assuming that the variance of the relative
percent error is constant. We model the log num-
ber of poor children using the log number of poor
child exemptions.

log(yij) = log(yTij) + eij

log(yTij) = β0 + β1 log(xij) +mij (2)

where xij is the number of poor child tax exemp-
tions as defined in the previous section. The true
number of poor children is yTij (the ’T’ superscript
denotes the true value) but we only get to ob-
serve yij with sampling error eij with variance σ2

eij .
Although the sampling error variance is also esti-
mated, we will treat it as known. The log of the
true number of poor children equals the regression
function in (2) plus the model error mij with vari-
ance σ2

m.
We obtain the following fit of this model:

Parameter Estimate Std. Error
β0 0.141 .0123
β1 0.929 .0023
σ2
m .132

The coefficient of variation (CV) for this model is√
σ2
m = 36.3%. Thus, one standard error is about

one third the magnitude of the estimate. This
model had an R-squared of .9013.

We assume that yTij comes from a log-normal
distribution and transform back to the original scale:

Ŷij = exp(β̂0 + β̂1 log(xij) + σ̂2
m/2).

In order to have consistency with the county esti-
mates, we rake the school district pieces, i.e. ratio
adjust, so that they sum up to the county esti-
mates. Log count models are not additive. If a
log count model at the county level is true, then
a log count model based on the same covariates at
a finer level, such as school district pieces, will not
sum up to give consistent results at the county level
in general. This is a problem with most nonlinear
models. Modifications to the log count model can
be made so that the school district piece and county
models agree on their first two moments (mean and
variance), but it is unclear how to interpret such a
model.

3.2 Share Models

Share models attempt to describe the distribution
of counts between the school districts within a county.
These models are conditional on the observed or
estimated county total. The shares are the propor-
tion of counts that are within a specific piece of
the whole. We can view the shares as the proba-
bility that each poor child in the county should be
assigned to a particular school district piece. One
feature of share models is that within a county, the
shares add up to 100 percent. While one can put
a regression model on the share (or transformation
of the share), care will need to be taken to make
sure that the shares remain within valid range (0
to 1) and that they are ratio adjusted to preserve
their sum to 100 percent.

We will present several share type models:

1. direct share: using the actual poor child tax
shares (this can be viewed as a special case
of #2).

2. modeled share: exponentially weighted pro-
portions of poor child tax exemptions



3. linear shares: linear model of the IRS shares
to census shares

4. logistic shares: model the logistic transforma-
tion of the shares

5. log shares: model the log transform of the
shares

On models 3-5, we will have to adjust the estimates
so that they are consistent with the county totals
since those models do not guarantee that the esti-
mates match. In the next section, we will assess the
various share models by comparing mean squared
errors.

In the most general form, we want to estimate
the number of poor children in school district piece
j county i as the product of the county number of
poor children and the share of the county poor for
the school district piece

ŷij = gij(x)yTi+

where gij(x) is a model-based estimate of the share
for the school district piece as a function of the
IRS income tax data. In our models, the function
gij(x) = g(xi) depends only on the vector of poor
child tax exemptions for the pieces of a particu-
lar county. However, we do not observe the true
county total poor and must base the estimate on
the census county total of poor children, yi+, with
sampling error variance σ2

ei+. This gives our gen-
eral estimator the form

ŷij = gij(x)yi+. (3)

All of the models presented in this section fall under
the general form given by (3). For models which
may require raking (models 3-5), the gij(x) is the
estimated share after the raking process.

Let xsij be the share of the number of poor child
exemptions for school district piece j within county
i. The direct share method models the number of
poor children as follows:

ŷij = xsijyi+.

In this model, gij(x) = xsij and there are no pa-
rameters to estimate. The variance of the census
estimate will be used for model evaluations in the
next section.

The next model is a generalization of the direct
share method. An exponentially weighted share is
modeled as follows:

yij =
xβij∑
j x

β
ij

yi+ =
exp(β log xij)∑
j exp(β log xij)

× yi+ (4)

Note that this model simplifies to the direct share
method when β = 1. This model can also be de-
rived from creating a share model from the log
count model (2). By model construction, the shares
within a county sum up to 100 percent, thus no ad-
justment will need to be made. The log likelihood
function for this model, conditioning on the num-
ber of poor children in the county, assume that the
shares are the multinomial probabilities gij(x)

loglike =
∑
i

∑
j

yij log gij(x)

=
∑
i

∑
j

yij log
exp(β log xij)∑
j exp(β log xij)

.

This model can easily be extended to include addi-
tional covariates. One feature that this model (4)
lacks is an intercept term in the exp(·) part. An in-
tercept would factor out and cancel with the same
term in the denominator, so it would be uniden-
tifiable. The parameter β is estimated by maxi-
mum likelihood. For Census 2000 and income year
1999 income tax data, the estimate for β was β̂ =
1.01745 with a standard error of .0454. Note that
β = 1 is within the 95% confidence interval for this
model, suggesting that the direct share method is
a plausible model given the class of models under
(4).

The next three models use the census share, or
a transformation of the share, as the response vari-
able. These models do not have the constraint that
the predicted shares should add up to 100 percent.
Therefore, we will need to ratio adjust the shares
after the predictions have been made. The three
responses to be modeled are the linear share, log
share and logistic share. The linear and log share
model both have the potential for having estimated
shares outside of the 0 to 1 range, while the logis-
tic share model will keep all of the predicted shares
within the valid range. Let ysij be the share of
census number of poor children for school district



piece j within county i. The linear, log and logistic
share models are:

ysij = βa0 + βa1xsij +maij + eaij

log ysij = βb0 + βb1 log xsij +mbij + ebij

logit(ysij) = βc0 + βc1logit(xsij) +mcij + ecij

where the mij ’s are the model error terms and
the eij ’s are the appropriate sampling error terms
whose variances are obtained by Taylor series lin-
earlization (Wolter, 1985). The results of the re-
gressions with standard errors in parentheses are

Model β0 β1 σ2
m R2

linear .0001 .9666 .0001 .9142
(.0001) (.0022)

log -.1034 .9304 .116 .9116
(.0069) (.0022)

logistic -.1189 .9344 .162 .9039
(.0075) (.0023)

When taking the census sampling variance into ac-
count, the linear share model is very close to the
direct share estimator. The models for the log and
logistic transformations of the share show a flatten-
ing effect, β1 < 1 shrinking towards equal shares for
each piece which results when β1 = 0.

To construct the whole school district estimate
under any of the models, we multiply the estimated
share, gij(x) by the county estimated number of
poor children and sum over the school district pieces
that composes school district k:

ŷk =
∑

(i,j)∈SDk

gij(x)yi+.

4 Model Evaluations

In this section we compare the predictions of num-
ber of poor children in school districts, ŷk, from
the models to the 2000 census long form estimates,
yij . In order to compare school districts of vastly
different sizes ranging from under 20 to near 1 mil-
lion, we will compare the differences between the
log of the model estimate and the log of the cen-
sus estimate. In addition to greatly reducing the
size effects on the error structure, the differences
in logs can be loosely interpreted as percent errors,

(ŷk−ycen,k)/ycen,k, when the differences are small
(Bell and Kramer 1999).

In our MSE evaluation, there are 3 sources of
error that we should account for in our analysis:

1. census long form sampling error

2. allocation error for IRS non-geocoded exemp-
tions

3. model error.

Knowing the relative sizes of these errors can tell us
the impact of the census long form sampling error
and IRS allocation error compared to the model-
ing error. For models that do not automatically
have their shares sum up to 100 percent (linear,
log and logistic shares), we will evaluate the raked
(ratio adjusted) version of the estimates. Our goal
is to provide estimates for whole school districts, so
that will be the unit of analysis for the MSE eval-
uation. An MSE evaluation at the school district
piece level would be dominated by the numerous
extremely small pieces which have a huge relative
error. By using whole school districts, many of
these extremely small pieces will be merged back
with larger pieces, damping their large relative er-
rors.

To understand how the three sources of error
form the MSE, we will decompose the error into
its component parts. Let yij = yTij + εyij be the
estimate from the census long form which is mea-
sured with sampling error, εyij . Similarly, let
xij = xTij + εxij be the IRS poor child tax exemp-
tions for school district piece (i, j



=
1
nk

∑
k

(log
∑

(i,j)∈SDk

(yij + εyij)

− log
∑

(i,j)∈SDk

gij(xT + εx)(yTi+ + εyi+))2

≈ E

log
∑

(i,j)∈SDk

yij − log
∑

(i,j)∈SDk

gij(x)yi+

2

(5)

+f1(census sampling variance)

+f2(non-geocoding allocation variance)

where f1(·) is the following function depending on
all of the census sampling error variances for the
school district pieces:

f1(census sampling variance)

=

∑
(i,j)∈SDk σ

2
yij[∑

(i,j)∈SDk y
T
ij

]2
+

∑
(i,j)∈SDk [gij(xT )]2σ2

yi+[∑
(i,j)∈SDk gij(x

T )yTi+
]2

−2×
∑

(i,j)∈SDk gij(x
T )σ2

yij∑
(i,j)∈SDk y

T
ij

∑
(i,j)∈SDk gij(x

T )yTi+

add f2(·) is the following function depending on
the variances of the allocation of non-geocoded tax
exemptions to school district pieces:

f2(non-geocoding allocation variance)

=

∑
(i,j)∈SDk σ

2
xij [g

′
ij(x

T )yTi+]2[∑
(i,j)∈SDk gij(x

T )yTi+
]2 .

MSE Results
Mean Sq. Census Model

Model Error var pred err. CV

log count .389 .198 .181 42.5%
direct .358 .195 .152 39.1%
exp wt .355 .201 .144 38.0%
linear .363 .194 .159 39.9%
log .383 .194 .179 42.3%
logistic .383 .194 .179 42.4%

The expectation in (5) represents the error in the
model predictions of the true log number of poor
children if there were no allocation of non-geocoded
tax exemptions. This measure takes out the con-
tribution of census sampling error from the MSE.
The MSE contribution due to the allocation of the
non-geocoded tax exemptions was .009 for all mod-
els which accounted for 2.3% to 2.5% (not shown
in table) of the total MSE in the models. One cri-
teria for selecting a “best” model is to chose the
model which has the lowest model prediction error
variance.

In the comparison of models, we included the
log count model with the share models discussed in
Section 3. For the log count model, shares were cre-
ated using the model estimates. Comparing model
prediction error variances and CVs, we see that the
exponential weighted share performs better than
the other share models, although the direct share
and linear share model are also good candidates.
Also, the models for the non linear transformation
of the shares have larger CVs. The census sam-
pling error variance accounts for 50% to 55% of
the total MSE between the census long form values
and model estimates. Thus, the census sampling
error variance is a large component of the overall
error structure. The high variance on the smaller
school districts makes it difficult to develop a good
predictive model for them.

5 Discussion

We have presented a variety of models using the
number of poor child tax exemptions in estimat-
ing the number of poor children in each school dis-
trict given by the Census 2000 long form question-
naire. Clearly the IRS tax data for income year
1999 has shown, even through just one variable,
to be very informative about the census long form
child poverty. One would assume that in non cen-
sus years that the IRS data would also be infor-
mative about that particular year’s child poverty
distribution within counties. If we can assume that
the relationship between true census poverty shares
and IRS child poverty shares is stable over time,
then the IRS data could be a great benefit in the
estimation of poor children in school districts be-



tween censuses. The main advantage to using the
IRS tax data is that the information in the tax
data is more timely than the last census. As we
move away from the census year, the census data
becomes more out of date as the distribution of
poor children may change.

There are still problems and issues that need to
be addressed when using the IRS data. First, some
counties have a large percentage of non-geocoded
tax exemptions. By distributing those exemptions
proportionally by child population counts, we are
making several assumptions about the geocoding
process. Mainly, we assume that all child exemp-
tions in the same county have an equal probability
of not being geocoded. Also, the variable used to
proportionally allocate the non-geocoded exemp-
tions comes from the census and rather should be
based on population figures that are updated yearly.
Currently there is a parallel project to impove school
age child population figures for school district pieces
(Oosse 2004). Another potential problem is the
implicit assumption about the distribution of age
for poor child exemptions. By multiplying the age
range of a school district piece to the count of
poor child exemptions, we are assuming that the
ages of the children represented in those exemp-
tions are equally allocated between the ages of 0
and 17. Distributions of single year age at the
county level could be used to better adjust the num-
ber of poor child exemptions to match the appro-
priate age/grade range for a school district piece.

Using only from Census 2000, we cannot eval-
uate the quality of the models providing updated
estimates. There is work in progress to tabulate
the 1990 Census and IRS income tax data for in-
come year 1989 to the school district boundaries of
2000. In this setting we can estimate our models
from 1990 Census and 1989 IRS data to create a
predictive model and carry it forward using IRS in-
come tax data from income year 1999 to estimate
the number of poor school age children in 1999.
We can then compare to Census 2000 results to
check accuracy for both new models and old up-
date scheme.

The models presented here are rather simple,
yet highly predictive. Additional variables from
both IRS tax data and other sources should be con-
sidered to reduce the model error variance. Vari-

ables such as total number of child exemptions and
total exemptions on tax returns with adjusted gross
income below the poverty threshold are currently
available in the IRS tax dataset. Variables col-
lected on whole school districts such as school en-
rollment and free/reduced lunch participation may
be useful in these models, but at this time it is un-
clear how to appropriately incorporate them into a
school district piece model. Finally, as the Amer-
ican Community Survey goes to full implementa-
tion, the data it produces could be a rich source of
information about child poverty at the school dis-
trict level. As this data becomes available in the
future, it should be evaluated for its potential in
modeling poor children at the school district level.
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